Some Ramanujan-Nagell equations with many solutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Ramanujan–Nagell equations with many solutions

If we fix y as 1 in (1) we obtain a Ramanujan-Nagell equation. In [4] Erdös, Stewart and Tijdeman proved that the exponential dependence on s in estimates (2) and (3) is not far from the truth by giving examples of Ramanujan-Nagell equations with many solutions. Let ε be a positive number, let 2 = p1, p2, . . . be the sequence of prime numbers and let n be an integer with n ≥ 2. They proved tha...

متن کامل

Solutions of some generalized Ramanujan – Nagell equations

in positive integers x, y,D and n > 2 with gcd(x, y)= 1. When D = 1, the equation has no solution by an old result of Lebesgue [14]. We assume from now on that D > 1. Eq. (1) has been extensively studied by many authors, in particular, by Cohn and Le. See [8,10–13] for several results. We also refer to [8] for a survey. The equation is referred as the generalized Ramanujan–Nagell equation who p...

متن کامل

On generalized Lebesgue-Ramanujan-Nagell equations

We give a brief survey on some classical and recent results concerning the generalized Lebesgue-Ramanujan-Nagell equation. Moreover, we solve completely the equation x + 1117 = y in nonnegative integer unknowns with n ≥ 3 and gcd(x, y) = 1. 1 Generalized Ramanujan-Nagell equations Mixed polynomial-exponential equations are of classical and recent interest. One of the most famous equation of thi...

متن کامل

Ramanujan-nagell Cubics

A well-known result of Beukers [3] on the generalized Ramanujan-Nagell equation has, at its heart, a lower bound on the quantity |x2 − 2n|. In this paper, we derive an inequality of the shape |x3 − 2n| ≥ x4/3, valid provided x3 6= 2n and (x, n) 6= (5, 7), and then discuss its implications for a variety of Diophantine problems.

متن کامل

On Two Diophantine Equations of Ramanujan-nagell Type

In this paper, we prove two conjectures of Ulas ([21]) on two Diophantine equations of Ramanujan-Nagell type. In fact, we show that the following equations x + (2 + 1)2 = 2 + 2 + 2 + 2 + 1, x + 1 3 ( 2 − 1 ) 2 = 1 9 ( 49 · 4 − 11 · 4 + 1 ) have exactly four solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 1990

ISSN: 0019-3577

DOI: 10.1016/0019-3577(90)90014-e